
Cardano Python Module
Release 0.8.2

Michał Sałaban

Jan 27, 2022

CONTENTS:

1 Quick start 3
1.1 Use testnet for your own safety . 3
1.2 Connect to the wallet . 3

2 Working with wallets 5
2.1 Creating wallets . 5
2.2 Retrieving existing wallets . 6
2.3 Removing wallets . 7
2.4 API reference . 7

3 Addresses 11
3.1 Retrieving wallet addresses . 11
3.2 API reference . 14

4 Listing transactions and spending funds 15
4.1 Listing transactions . 15
4.2 Spending funds . 16
4.3 Metadata . 18
4.4 API reference . 19

5 Working with native assets 23
5.1 Asset IDs . 23
5.2 Balances . 23
5.3 Sending assets . 23

6 Staking 25
6.1 Querying pools . 25
6.2 Staking status . 25
6.3 Staking . 26
6.4 Unstaking . 26

7 UTXO stats 27

8 Constants and simple types 29
8.1 API reference . 29

9 Exceptions 33
9.1 API reference . 33

10 The wallet REST backend (from cardano-wallet) 35
10.1 API reference . 35

i

11 Indices and tables 37

Python Module Index 39

Index 41

ii

Cardano Python Module, Release 0.8.2

Welcome to the documentation for the cardano Python module.

The aim of this project is to offer a set of tools for interacting with Cardano blockchain platform in Python. It provides
higher level classes representing objects from the Cardano environment, like wallets, addresses, transactions.

Currently it operates over REST protocol offered by the cardano-wallet binary, however, a forward compatibility
for implementing other backends is one of the key features.

Project homepage: https://github.com/emesik/cardano-python

CONTENTS: 1

https://github.com/emesik/cardano-python

Cardano Python Module, Release 0.8.2

2 CONTENTS:

CHAPTER

ONE

QUICK START

This quick start tutorial will guide you through the first steps of connecting to the Cardano wallet software. We assume:

1. You have installed and started cardano-node. (If there’s no package for your OS, you may consider installing a
Docker image, however many of the tutorials out there are out of date.)

2. The node has synchronized the blockchain.

3. You have installed and started cardano-wallet.

4. The wallet software is connected to the node.

5. You know how to use CLI (command line interface).

6. You have some experience with Python.

1.1 Use testnet for your own safety

The testnet is another Cardano network where worthless coins circulate and where, as the name suggests, all tests are
supposed to be run. It’s also a place for early deployment of future features of the platform itself.

Warning: Please run all tests on testnet. The code presented in these docs will perform the requested operations
right away, without asking for confirmation. This is live code, not a wallet application that makes sure the user has
not made a mistake. Running on the mainnet, if you make a mistake, you may lose money.

1.2 Connect to the wallet

For brevity, the following example assumes thet you have an existing wallet of id
eff9cc89621111677a501493ace8c3f05608c0ce and the cardano-wallet is listening locally on port 8090. In
the following chapter you’ll also learn how to create a new wallet from seed.

In [1]: from cardano.wallet import Wallet

In [2]: from cardano.backends.walletrest import WalletREST

In [3]: wal = Wallet("eff9cc89621111677a501493ace8c3f05608c0ce",␣
→˓backend=WalletREST(port=8090))

In [4]: wal.sync_progress()
Out[4]: 1.0

(continues on next page)

3

https://github.com/input-output-hk/cardano-node
https://github.com/input-output-hk/cardano-wallet

Cardano Python Module, Release 0.8.2

(continued from previous page)

In [5]: wal.balance()
Out[5]: Balance(total=Decimal('998.831199'), available=Decimal('998.831199'),␣
→˓reward=Decimal('0.000000'))

Congratulations! You have connected to the wallet. You may now proceed to the next section, which will tell you about
interaction with wallet.

4 Chapter 1. Quick start

CHAPTER

TWO

WORKING WITH WALLETS

The example presented in the quickstart section will certainly fail in your environment, as you don’t have the same
wallet created yet. In order to set up a new wallet, you need to learn first about two kinds of objects:

1. Wallet which represents a single Cardano wallet and allows for operations like balance retrieval, searching
through the transaction history and spending funds. Wallets are identified by unique ID which is deterministically
derived from the seed (mnemonic phrase), so each time you delete and create a wallet again, it receives the same
ID.

2. WalletService which is responsible for creating new and listing or retrieving existing wallets.

3. Backend, which represents the underlying service layer. At the moment the only backend available is the REST
API provided by cardano-wallet, represented by the WalletREST objects.

Note: Remember that creating or deleting a wallet will not record any information on the blockchain. If the wallet
you’re creating existed before, you’ll be presented its’ entire history. Likweise, if you delete a wallet, you’ll be able to
create it again in this or any other software and claim the funds or see historical transactions.

2.1 Creating wallets

Let’s assume your backend doesn’t know anything about the wallet eff9cc89621111677a501493ace8c3f05608c0ce,
which is exactly your starting scenario. In order to obtain that wallet object, you’d have first to create it:

In [1]: from cardano.wallet import WalletService

In [2]: from cardano.backends.walletrest import WalletREST

In [3]: ws = WalletService(WalletREST(port=8090))

In [4]: wal = ws.create_wallet(
name="test wallet",
mnemonic="resist render west spin antique wild gossip thing syrup network risk␣

→˓gospel seek drop receive",
passphrase="xxx",
)

In [4]: wal.sync_progress()
Out[4]: 0.05

(continues on next page)

5

Cardano Python Module, Release 0.8.2

(continued from previous page)

In [5]: wal.balance()
Out[5]: Balance(total=Decimal('0.000000'), available=Decimal('0.000000'), reward=Decimal(
→˓'0.000000'))

Even though this wallet may contain some funds (on testnet), right after creation the balance will be null and the
transaction history empty. This is because of ongoing sync process which scans the entire blockchain for transaction
history.

2.1.1 Balance tuple

The balance returned by wal.balance() (as well as balances of native assets) is a subclass of collections.
namedtuple. It consists of three elements:

0. total— indicating the total amount of funds in the wallet, without going into too much details.

1. available— the amount of funds without staking rewards, might be also considered as the principal
paid to the wallet and used for staking.

2. reward — the amount received as staking interest.

Hence, to just get the full balance, you may use wal.balance().total.

2.1.2 Sync progress

The value returned by .sync_progress() is a float number that represents how advanced the synchronization pro-
cess is. It starts from 0.0 and goes up to 1.0 which says the wallet is up to date with the blockchain. A simple
synchronization wait loop might look like the following:

In [6]: import time

In [7]: while wal.sync_progress() < 1.0:
time.sleep(1)

Depending on your conditions, you may use other sleep period value. Just remember to call it within the loop, as it
releases CPU time to other processes instead of constantly bombarding your REST API with requests.

2.2 Retrieving existing wallets

In case your backend already knows about the wallet, you may use much simpler approach:

In [1]: from cardano.wallet import Wallet

In [2]: from cardano.backends.walletrest import WalletREST

In [3]: wal = Wallet("eff9cc89621111677a501493ace8c3f05608c0ce",␣
→˓backend=WalletREST(port=8090))

In [4]: wal.sync_progress()
Out[4]: 1.0

(continues on next page)

6 Chapter 2. Working with wallets

Cardano Python Module, Release 0.8.2

(continued from previous page)

In [5]: wal.balance()
Out[5]: Balance(total=Decimal('998.831199'), available=Decimal('998.831199'),␣
→˓reward=Decimal('0.000000'))

Note: Although the backend is a required argument right now, the example passes it to the contstructor like it was
optional. This is because in the near future some offline functionality will be added to the Wallet class and initialization
without backend will be available.

2.3 Removing wallets

This is a trivial operation:

In [6]: wal.delete()

After that, if you try to use the wallet object again, the cardano.backends.walletrest.exceptions.NotFound
exception will be raised.

2.4 API reference

class cardano.wallet.Wallet(wid, backend, passphrase=None)
Represents a single wallet. Allows for browsing the history, checking balance and spending funds.

Parameters

• wid – the wallet ID

• backend – the backend used to handle the underlying service layer

• passphrase – the passphrase protecting the wallet’s spending functionality, not required for
read-only operations. It will be stored for the entire lifetime of the object in .passphrase
field. It might be also provided for each individual spend operation, then it will be discarded
after use.

addresses(with_usage=False)
Returns full list of already generated addresses.

Parameters with_usage – A bool indicating whether to retrieve used/unused address status
too.

Return type list of Address objects when with_usage == False and of (Address, bool)
tuples otherwise.

assets()
Returns the balance of native assets.

Return type dict of AssetID: Balance pairs

balance()
Returns the Balance of the wallet.

delete()
Deletes the wallet from the backend. It doesn’t wipe the funds; the wallet may be restored later on, using
the mnemonic phrase.

2.3. Removing wallets 7

Cardano Python Module, Release 0.8.2

estimate_fee(destinations, metadata=None)
Estimates the fee for a potential transaction to specified destinations and carrying optional metadata. Re-
turns a tuple of estimated minimum and maximum fee, in ADA.

Parameters

• destinations – a list of Address and amount pairs [(address, amount), ...]

• metadata – metadata to be sent, as Metadata instance od dict mapping int keys to
values of acceptable types

Return type (Decimal, Decimal)

first_unused_address()
Returns the first unused address. There is no internal pointer and the result is based on blockchain and
mempool state only, and their interpretation by the backend, so multiple subsequent calls will return
the same address if no transfer is received between them.

stake(pool, passphrase=None)
Stakes all wallet balance at the given pool.

Parameters

• pool – The pool to stake ADA at

• passphrase – the passphrase to the wallet. It takes precedence over self.passphrase
and is discarded after use. If neither self.passphrase nor passphrase is set, a
MissingPassphrase exception will be raised.

Return type Transaction

stake_pools(stake=None)
Returns a list of known stake pools ordered by descending rewards.

Parameters stake (Decimal) – The amount of ADA to be staked. Optional. If omitted, the
wallet’s total balance will be used instead.

Return type list

staking_status()
Returns information about staking status.

Return type StakingStatus

sync_progress()
Returns the progress of synchronization with the blockchain. The value is float ranging from 0.0 to 1.0.

transfer(address, amount, assets=None, metadata=None, allow_withdrawal=False, ttl=None,
passphrase=None)

Sends a transfer from the wallet. Returns the resulting transaction.

Parameters

• address – destination Address or subtype

• amount – amount to send

• assets – a sequence of AssetID and quantity pairs

• metadata – metadata to be sent, as Metadata instance od dict mapping int keys to
values of acceptable types

• allow_withdrawal – Allow withdrawing staking rewards to cover the transaction amount
or fee.

8 Chapter 2. Working with wallets

Cardano Python Module, Release 0.8.2

• ttl – Time To Live in seconds. After TTL has lapsed the nodes give up on broadcasting
the transaction. Leave None to use the default value.

• passphrase – the passphrase to the wallet. It takes precedence over self.passphrase
and is discarded after use. If neither self.passphrase nor passphrase is set, a
MissingPassphrase exception will be raised.

Return type Transaction

transfer_multiple(destinations, metadata=None, allow_withdrawal=False, ttl=None, passphrase=None)
Sends multiple transfers from the wallet. Returns the resulting transaction.

Parameters

• destinations – a list of Address and amount pairs [(address, amount), ...] or
triples where the third element is a sequence of AssetID and quantity pairs

• metadata – metadata to be sent, as Metadata instance od dict mapping int keys to
values of acceptable types

• allow_withdrawal – Allow withdrawing staking rewards to cover the transaction amount
or fee.

• ttl – Time To Live in seconds. After TTL has lapsed the nodes give up on broadcasting
the transaction. Leave None to use the default value.

• passphrase – the passphrase to the wallet. It takes precedence over self.passphrase
and is discarded after use. If neither self.passphrase nor passphrase is set, a
MissingPassphrase exception will be raised.

Return type Transaction

unstake(passphrase=None)
Cancels active stake delegation.

Parameters passphrase – the passphrase to the wallet. It takes precedence over self.passphrase
and is discarded after use. If neither self.passphrase nor passphrase is set, a
MissingPassphrase exception will be raised.

Return type Transaction

utxo_stats()
Returns UTXO statistics as a tuple of (total_balance, histogram, scale).

class cardano.wallet.WalletService(backend=None)
Represents the service responsible for listing and retrieving the existing wallets or creating new ones.

Parameters backend – the backend used to handle the underlying service layer

create_wallet(name, mnemonic, passphrase, mnemonic_2f=None)
Creates/restores a wallet internally in the backend. Returns only ID as the backend may need some time to
sync before being able to return full wallet data.

Parameters

• name – Name of the wallet

• mnemonic – The mnemonic seed

• passphrase – The wallet passphrase for spending operations (plain text string)

• mnemonic_2f – An optional passphrase used to encrypt the mnemonic sentence

Return type str

2.4. API reference 9

Cardano Python Module, Release 0.8.2

wallet(wid, passphrase=None)
Returns the wallet of given ID, connected to the backend and equipped with the passphrase if given.

Parameters

• wid – The wallet ID (hex string)

• passphrase – The wallet passphrase for spending operations (plain text string)

Return type Wallet

wallets()
Returns the list of all Wallets handled by the backend.

10 Chapter 2. Working with wallets

CHAPTER

THREE

ADDRESSES

At the moment the module doesn’t have validation of Cardano addresses, other than checking if the prefix is correct. It
recognizes the following:

• Shelley era addr1 and addr_test1

• Byron era Ae2 and DdzFF

Addresses are instances of Address class but you may use strings instead. Conversion and comparison methods are
provided. No other functionality is available yet.

3.1 Retrieving wallet addresses

To get a list of addresses available in a wallet, do the following:

In [6]: wal.addresses()
Out[6]: [addr_
→˓test1qr9ujxmsvdya6r4e9lxlu4n37svn52us7z8uzqdkhw8muqld56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqzuzvzt,
→˓

addr_
→˓test1qpjqfw0xn8wp3rt9633ja6ua2nfmpx70qdn67cutc93p02hd56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqvy6c2z,
→˓

addr_
→˓test1qqaaeru7xswhg9n9653ajpcryxl0334ryfp3kpuvd6aw0hhd56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqukuem0,
→˓

addr_
→˓test1qqmv6m3mjwk8xfwc6mmxrah5fgrvvvtk0ncey84jcs4a798d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqzn97h7,
→˓

addr_
→˓test1qznf0k97a9wn50yy3aw6l2zfugknczj45gyfk2nykk49qy0d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswq88sus6,
→˓

addr_
→˓test1qrkm3tgk74edkv60uqwedayw4kut0zgg5qgtm3epjvyxvt0d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqwu2s5h,
→˓

addr_
→˓test1qqd86dlwasc5kwe39m0qvu4v6krd24qek0g9pv9f2kq9x28d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqgepa9e,
→˓

addr_
→˓test1qrjvywxnrwv7ehx7f0enyta2n2lpjfk096df3mul9zr8vw8d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswq737ksu,
→˓

addr_
→˓test1qzyhv3csdwlyuwt7kgjvkjpfrq0ap3d6lpm0ej88yf6zuj8d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqfltagt,
→˓

(continues on next page)

11

Cardano Python Module, Release 0.8.2

(continued from previous page)

addr_
→˓test1qpzwtycspdltafh34fedqayuh755uefuafvnveta6tt95z8d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqk2emsk,
→˓

addr_
→˓test1qqfkfcpcdd0ll44qj3wasnl6vdyay3zur7lpay4p49pxjt8d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqghlcdr,
→˓

addr_
→˓test1qpd78m0427l4q62s305c0487gnqla07t33sdm9wenvgw23hd56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqcrzdqy,
→˓

addr_
→˓test1qz3d7yap080hnkz8wjrmcng0euc5qamrl4s6daw0f8gwknld56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswq8eeq7q,
→˓

addr_
→˓test1qzunys8wvg5ssh2m6jrpvsckmjye30d7kzavrmq3gwkt270d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswq85qdpf,
→˓

addr_
→˓test1qqdvqczhy05zjsspaeaay3a27xey0lm2lwevl27sgfy4y88d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswq6luvc6,
→˓

addr_
→˓test1qqu76rcvmt5e86dyxv90dpch5adgafhdmy20hs36n07ds9hd56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqgq0nyj,
→˓

addr_
→˓test1qp00p2y2yf9gkqul9w0jzfyju690flpefunjdl7z9cm2wdld56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswq0aw9al,
→˓

addr_
→˓test1qzkh6wkkhgf57g5s6tqpt342fqezurx7tmapdw8q3mlud2hd56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqnr9zdq,
→˓

addr_
→˓test1qr9y5q90w2e866gc5ehs5h2dqwzdd9maenpxf6wdj4c5238d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqspuwcy,
→˓

addr_
→˓test1qzhjjeqt42lc0g48mlljsjxlleu24q206vxgtd7fu3vrzyhd56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqv5nvpg]

Optionally, you may also retrieve info whether each of the addresses has been used. That means, it has received some
funds. Please note the returned structure will be now a list of tuples (address, used).

In [7]: wal.addresses(with_usage=True)
Out[7]: [(addr_
→˓test1qr9ujxmsvdya6r4e9lxlu4n37svn52us7z8uzqdkhw8muqld56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqzuzvzt,
→˓ True),

(addr_
→˓test1qp64xq7fsz9kvjwjy5tzfpetp2jmmhhk68kw066wqvyfgvhd56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqj7msh0,
→˓ True),

(addr_
→˓test1qpjqfw0xn8wp3rt9633ja6ua2nfmpx70qdn67cutc93p02hd56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqvy6c2z,
→˓ False),

(addr_
→˓test1qqaaeru7xswhg9n9653ajpcryxl0334ryfp3kpuvd6aw0hhd56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqukuem0,
→˓ False),

(addr_
→˓test1qqmv6m3mjwk8xfwc6mmxrah5fgrvvvtk0ncey84jcs4a798d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqzn97h7,
→˓ False),

(continues on next page)

12 Chapter 3. Addresses

Cardano Python Module, Release 0.8.2

(continued from previous page)

(addr_
→˓test1qznf0k97a9wn50yy3aw6l2zfugknczj45gyfk2nykk49qy0d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswq88sus6,
→˓ False),

(addr_
→˓test1qrkm3tgk74edkv60uqwedayw4kut0zgg5qgtm3epjvyxvt0d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqwu2s5h,
→˓ False),

(addr_
→˓test1qqd86dlwasc5kwe39m0qvu4v6krd24qek0g9pv9f2kq9x28d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqgepa9e,
→˓ False),

(addr_
→˓test1qrjvywxnrwv7ehx7f0enyta2n2lpjfk096df3mul9zr8vw8d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswq737ksu,
→˓ False),

(addr_
→˓test1qzyhv3csdwlyuwt7kgjvkjpfrq0ap3d6lpm0ej88yf6zuj8d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqfltagt,
→˓ False),

(addr_
→˓test1qpzwtycspdltafh34fedqayuh755uefuafvnveta6tt95z8d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqk2emsk,
→˓ False),

(addr_
→˓test1qqfkfcpcdd0ll44qj3wasnl6vdyay3zur7lpay4p49pxjt8d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqghlcdr,
→˓ False),

(addr_
→˓test1qpd78m0427l4q62s305c0487gnqla07t33sdm9wenvgw23hd56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqcrzdqy,
→˓ False),

(addr_
→˓test1qz3d7yap080hnkz8wjrmcng0euc5qamrl4s6daw0f8gwknld56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswq8eeq7q,
→˓ False),

(addr_
→˓test1qzunys8wvg5ssh2m6jrpvsckmjye30d7kzavrmq3gwkt270d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswq85qdpf,
→˓ False),

(addr_
→˓test1qqdvqczhy05zjsspaeaay3a27xey0lm2lwevl27sgfy4y88d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswq6luvc6,
→˓ False),

(addr_
→˓test1qqu76rcvmt5e86dyxv90dpch5adgafhdmy20hs36n07ds9hd56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqgq0nyj,
→˓ False),

(addr_
→˓test1qp00p2y2yf9gkqul9w0jzfyju690flpefunjdl7z9cm2wdld56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswq0aw9al,
→˓ False),

(addr_
→˓test1qzkh6wkkhgf57g5s6tqpt342fqezurx7tmapdw8q3mlud2hd56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqnr9zdq,
→˓ False),

(addr_
→˓test1qr9y5q90w2e866gc5ehs5h2dqwzdd9maenpxf6wdj4c5238d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqspuwcy,
→˓ False),

(addr_
→˓test1qzhjjeqt42lc0g48mlljsjxlleu24q206vxgtd7fu3vrzyhd56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqv5nvpg,
→˓ False),

(addr_
→˓test1qzhhm8em4pundp2ypcd36euplhe39pmuah290meu6l6gtqhd56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqusvkfl,
→˓ False)]

3.1. Retrieving wallet addresses 13

Cardano Python Module, Release 0.8.2

3.2 API reference

class cardano.address.Address(addr, wallet=None)
Cardano base address class. Does no validation, it is up to child classes.

Compares with str and bytes objects.

Parameters

• addr – the address as str or bytes or Address

• wallet – the Wallet object if address belongs to

class cardano.address.ByronAddress(addr, wallet=None)

class cardano.address.IcarusAddress(addr, wallet=None)

class cardano.address.ShelleyAddress(addr, wallet=None)

14 Chapter 3. Addresses

CHAPTER

FOUR

LISTING TRANSACTIONS AND SPENDING FUNDS

From wallet perspective transactions can be generally grouped into incoming and outgoing. This is just a convenience,
as almost every outgoing transaction has a change amount that goes back to the originating wallet.

4.1 Listing transactions

Retrieving the history of the wallet is pretty straightforward:

In [8]: txns = wal.transactions()

In [9]: txns[0].txid
Out[9]: '88633270f854eea5b2f35a863d748b294299deecf62ec9629ff08fca87fff45c'

In [10]: txns[0].amount_out
Out[10]: Decimal('1.000000')

In [11]: txns[0].fee
Out[11]: Decimal('0.168801')

In [12]: txns[1].txid
Out[12]: '0b048162778e29e98d833d948a3be7f18f9ce8693d7ee407c7d38b6ef2a5a264'

As you probably noticed, the amounts are given in ADA as Python Decimal type, which is perfect for monetary
operations.

4.1.1 Narrowing down the query

In order to limit the number of results you may ask for transactions meeting special criteria.

The most important, perhaps, is the txid argument which accepts single IDs as well as sequences thereof. So, both

wal.transactions(txid="0b048162778e29e98d833d948a3be7f18f9ce8693d7ee407c7d38b6ef2a5a264")

as well as

wal.transactions(txid=[
"0b048162778e29e98d833d948a3be7f18f9ce8693d7ee407c7d38b6ef2a5a264",
"88633270f854eea5b2f35a863d748b294299deecf62ec9629ff08fca87fff45c"]
)

are valid queries.

15

Cardano Python Module, Release 0.8.2

Blockchain position

The transaction filter accepts parameters filtering against the position in the ledger. min_epoch, max_epoch,
min_slot, max_slot, min_absolute_slot, max_absolute_slot, min_height and max_height can be used and
combined.

Ranges combining different criteria may be applied in the same call, e.g. to ask only for the first 10 slots of epoch 230
would be

wal.transactions(min_epoch=230, max_epoch=230, max_slot=10)

Because both epochs and slots are precisely defined periods of time, querying for them is like asking for quite precise
timestamp of mining of the transaction’s block. In contrast, asking for height considers the actual number of blocks
since the genesis, as not all slots have been used to generate a block.

Mempool

Even though the mempool life part of Cardano transactions is usually very short, it is possible to ask for transactions
not in ledger, as well as to exclude them from the results.

To include mempool, use unconfirmed=True. To include mined transactions, use confirmed=True. False values
exclude these types of transactions from the results.

By default, unconfirmed=False and confirmed=True which means the default settings ask only for transactions in
the ledger.

Filtering by address

Arguments src_addr and dest_addr filter for source and destination addresses, respectively. They can be used to
ask for single or multiple addresses, just like txid described above.

Note: Please be aware that this kind of query is not very reliable. cardano-wallet is known to return incomplete
input/output data, missing the address info.

4.2 Spending funds

In order to spend funds, you need to specify the destination address, amount (as Decimal or int) and provide the
passphrase if you haven’t done so when initializing the Wallet object.

In [17]: tx = wal.transfer(
"addr_

→˓test1qqr585tvlc7ylnqvz8pyqwauzrdu0mxag3m7q56grgmgu7sxu2hyfhlkwuxupa9d5085eunq2qywy7hvmvej456flknswgndm3
→˓",

7,
passphrase="xxx")

In [18]: tx.txid
Out[18]: 'a7a16a0653a6a397eb822ff8a3f610b5dabc82c5da2425fcc267f983f0edec88'

In [19]: tx.amount_in
(continues on next page)

16 Chapter 4. Listing transactions and spending funds

Cardano Python Module, Release 0.8.2

(continued from previous page)

Out[19]: Decimal('0.000000')

In [20]: tx.amount_out
Out[20]: Decimal('7.000000')

In [21]: tx.fee
Out[21]: Decimal('0.168801')

Another useful function is Wallet.transfer_multiple which accepts more than one destination for a single trans-
action. It is useful for aggregating payouts and reducing fee costs. The difference from the previous method is that it
accepts a sequence of (address, amount) pairs.

In [23]: tx = wallet.transfer_multiple(
(

(
"addr_

→˓test1qqr585tvlc7ylnqvz8pyqwauzrdu0mxag3m7q56grgmgu7sxu2hyfhlkwuxupa9d5085eunq2qywy7hvmvej456flknswgndm3
→˓",

Decimal("1.234567"),
),
(

"addr_
→˓test1qqd86dlwasc5kwe39m0qvu4v6krd24qek0g9pv9f2kq9x28d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqgepa9e
→˓",

Decimal("2.345678"),
),

),
passphrase="xxx",

)

In [24]: tx.txid
Out[24]: 'a7a16a0653a6a397eb822ff8a3f610b5dabc82c5da2425fcc267f983f0edec88'

In [25]: tx.amount_in
Out[25]: Decimal('0.000000')

In [26]: tx.amount_out
Out[26]: Decimal('3.580245')

In [27]: tx.fee
Out[27]: Decimal('0.168801')

Of course the list of destinations can have a single element. In fact, the transfer() method is just a shortcut for
transfer_multiple() to make single payments easier.

4.2. Spending funds 17

Cardano Python Module, Release 0.8.2

4.2.1 Estimating fees

The Wallet object also offers method which estimates fee for transaction. The signature is similar to
transfer_multiple(). It accepts a list of payments to be made and optionally the metadata, and returns a tuple
of estimated minimum and maximum fee for the eventual transaction.

In [23]: f = wal.estimate_fee(
(

("addr_
→˓test1qqr585tvlc7ylnqvz8pyqwauzrdu0mxag3m7q56grgmgu7sxu2hyfhlkwuxupa9d5085eunq2qywy7hvmvej456flknswgndm3
→˓",

Decimal("1.234567")),
("addr_

→˓test1qqd86dlwasc5kwe39m0qvu4v6krd24qek0g9pv9f2kq9x28d56vd3zqzthdaweyrktfm3h5cz4je9h5j6s0f24pryswqgepa9e
→˓",

Decimal("2.345678")),
))

In [24]: f
Out[24]: (Decimal('0.174785'), Decimal('0.180989'))

Note: Don’t forget to include metadata when estimating fees. They are based on the transaction size and additional
data changes that significantly.

4.3 Metadata

Since the Shelley era, Cardano allows for adding metadata to transactions. Metadata is a mapping where keys are
integers and values belong to a short list of supported data types. Description of the structure is beyond the scope of
this documentation, however you may read this description or another one which includes a good test example.

4.3.1 Lists and dicts as map keys

While Cardano supports map objects that use another map or list as key element, this feature cannot be supported
by the Python module directly. The reason is that data on blockchain is immutable (cannot be modified) while the
corresponding Python objects (dict and list) are mutable, which disqualifies them as dict keys due to unstable
hash value.

For that reason, substitutions have been introduced when following types of variables are used as keys:

• list: the key on Python side is tuple,

• dict: will be converted to ImmutableDict

18 Chapter 4. Listing transactions and spending funds

https://github.com/input-output-hk/cardano-wallet/wiki/TxMetadata
https://github.com/input-output-hk/cardano-node/blob/master/doc/reference/tx-metadata.md

Cardano Python Module, Release 0.8.2

4.3.2 Storing and retrieving metadata

Metadata can be passed to Wallet.transfer() and Wallet.transfer_multiple()methods as dict or Metadata
instance. It will be instantly available in the .metadata attribute of the resulting Transaction object.

In [23]: tx = wal.transfer(
"addr_

→˓test1qqr585tvlc7ylnqvz8pyqwauzrdu0mxag3m7q56grgmgu7sxu2hyfhlkwuxupa9d5085eunq2qywy7hvmvej456flknswgndm3
→˓",

7,
metadata={1: "first value", 23: "next value"},
passphrase="xxx")

In [24]: tx.metadata
Out[24]: {1: 'first value', 23: 'next value'}

Metadata can be initialized separately by passing a list of (key, value) pairs.

In [25]: m = Metadata(((1, "first value"), (23, "next value")))

In [26]: m
Out[26]: {1: 'first value', 23: 'next value'}

Such instance can be also passed as metadata parameter to the transfer methods.

4.4 API reference

4.4.1 Transactions

class cardano.transaction.Input(iid=None, address=None, amount=None, assets=None)
Represents a Transaction input.

Parameters

• iid (str hex) – the input ID

• address (cardano.address.Address) – the origin address

• amount (Decimal) – the amount in ADA

• assets (list) – a sequence of AssetID quantity pairs

class cardano.transaction.Output(address=None, amount=None, assets=None)
Represents a Transaction output.

Parameters

• address (cardano.address.Address) – the destination address

• amount (Decimal) – the amount in ADA

• assets (list) – a sequence of AssetID quantity pairs

class cardano.transaction.Transaction(txid=None, **kwargs)
Represents a Cardano transaction.

Parameters

• txid – the ID of the transaction

4.4. API reference 19

Cardano Python Module, Release 0.8.2

• fee – fee amount in ADA

• inputs – a sequence of Input objects

• outputs – a sequence of Output objects

• local_inputs – a sequence of Input objects that originate from local wallet

• local_outputs – a sequence of Output objects that are destined to local wallet

• withdrawals – a sequence of (Decimal, str) pairs of amounts and stake addresses

• metadata – an instance of Metadata

4.4.2 Numbers

A submodule with helpers useful for unit conversion. The idea is to represent amounts in ADA as Decimal type with
6 places of precision. For low-level backends, however, it’s easier to use int of Lovelaces.

Also, float arguments are accepted but will issue a RuntimeWarning as it is a very bad idea to use floating-point
numbers for monetary data.

cardano.numbers.as_ada(amount)
Return the amount rounded to maximal ADA precision.

Parameters amount (Decimal,int) – the amount to be sanitized

Return type Decimal with 6 decimal places precision

cardano.numbers.from_lovelaces(amount)
Convert Lovelaces to ADA.

Parameters amount (int) – the amount of Lovelaces

Return type Decimal

cardano.numbers.to_lovelaces(amount)
Convert ADA to Lovelaces.

Parameters amount (Decimal,int) – the amount of ADA

Return type int

4.4.3 Metadata

A class representing Cardano transaction metadata. Inherits from dict and offers both validation and serialization of
the data.

class cardano.metadata.ImmutableDict
A flavor of dict with all mutating methods blocked and hash generation added. It can be used as mapping keys.

clear()→ None. Remove all items from D.

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem()→ (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

update([E], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys()
method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

20 Chapter 4. Listing transactions and spending funds

Cardano Python Module, Release 0.8.2

class cardano.metadata.Metadata(*args, **kwargs)
Represents Cardano transaction metadata. Inherits from dict but passes all keys and values through validity
check.

Parameters mapping – a sequence of (key, value) pairs

static deserialize(txdata)
Deserializes transaction metadata dict and returns Metadata instance.

Parameters txdata – the transaction data

serialize()
Returns serialized form of the metadata, which can be passed to the transaction.

static serialize_value(val)
Serializes Python value to an object that can be passed to transaction as a metadata value. The returned
object is a mapping which contains both the type name and the value.

Raises RuntimeError when a value of unrecognized type has been passed.

static validate_key(key)
Checks if the key is allowed, i.e. is an int and within the allowed range.

Raises KeyError otherwise.

static validate_value(val)
Checks if the value is allowed, i.e. is one of int, str, bytes, bytearray, list or dict.

Raises TypeError otherwise. Also raises ValueError if the value is of proper type but exceeds range
limit for Cardano metadata.

4.4. API reference 21

Cardano Python Module, Release 0.8.2

22 Chapter 4. Listing transactions and spending funds

CHAPTER

FIVE

WORKING WITH NATIVE ASSETS

With Mary era Cardano introduced native assets to the network. Unlike other popular platforms, Cardano doesn’t
need smart contracts to handle them. The assets are indivisible (amounts are integers) and their handling is somewhat
different than of ADA.

5.1 Asset IDs

Since different native assets may bear the same name, the actual identifier of an asset consists of asset_name and
policy_id. They are grouped together into cardano.simpletypes.AssetID, a class which supports equality op-
erator.

5.2 Balances

The wallet has .assets() method which returns a dict where keys are cardano.simpletypes.AssetID and values
are cardano.simpletypes.Balance objects. At the moment the balances have always None as reward and total
equal to available but that may perhaps change in the future.

In [9]: wal.assets()
Out[9]: {6c6f766164616e6674:0c306361512844fbdb83294f278937c04af6e56ab1d94d2dd187d725:␣
→˓Balance(total=1, available=1, reward=None),␣
→˓6c6f766164616e6674:0f5e9e9143f4eb0317584aa295d0d2dc9741edfdbbe1af64f241aa32:␣
→˓Balance(total=1, available=1, reward=None)}

5.3 Sending assets

Transfer of assets can be specified by additional keyword to the Wallet.transfer() function or third element of
destinations item passed to Wallet.transfer_multiple(). An example of sending 2.0 ADA along with a single
native token is:

In [10]: wal.transfer(
"addr_

→˓test1qqpwa4lv202c9q4fag5kepr0jjnreq8yxrjgau7u4ulppa9c69u4ed55s8p7nuef3z65fkjjxcslwdu3h75zl7zeuzgqv3l7cc
→˓",

2,
assets=[

(
(continues on next page)

23

Cardano Python Module, Release 0.8.2

(continued from previous page)

AssetID(
"7461786174696f6e206973207468656674",
"6b8d07d69639e9413aa637a1a815a7123c69c86abbafb66dbfdb1aa7"
),

1)
])

24 Chapter 5. Working with native assets

CHAPTER

SIX

STAKING

The module allows for staking ADA (also called delegation), withdrawing the stake and retrieving information about
pools. This part of the functionality relies heavily on custom data structures, so you may also check their descriptions.

6.1 Querying pools

To query for a list of staking pools, Wallet.stake_pools() may be used. It accepts the amount of the stake as
optional argument, otherwise it uses wallet’s current total balance.

The result is a list of pools, represented by StakePoolInfo and sorted by expected long-term interest, from highest
to lowest.

In [30]: pools = wallet.stake_pools()

In [31]: pools[0]
Out[31]: StakePoolInfo(id='pool1tzmx7k40sm8kheam3pr2d4yexrp3jmv8l50suj6crnvn6dc2429',␣
→˓status=<StakePoolStatus.ACTIVE: 1>, ticker=None, name=None, description=None,␣
→˓homepage=None, rewards=StakeRewardMetrics(expected=Decimal('0.182832'), stake=Decimal(
→˓'1051.689055')), cost=Decimal('340.000000'), margin=Decimal('0.035'), pledge=Decimal(
→˓'54000000.000000'), relative_stake=Decimal('0.0014'), saturation=Decimal('0.
→˓7001171530343129'), produced_blocks=1091, retirement=None)

You may query pools regardless of whether the wallet is currently delegating or not.

6.2 Staking status

The wallet might be in one of two states: delegating or not delegating. Additionally, once delegation or withdrawal
have been scheduled, they would also appear in the list of planned future operations.

In [32]: wallet.staking_status()
Out[32]: (StakingStatus(delegating=True, target_id=
→˓'pool1tzmx7k40sm8kheam3pr2d4yexrp3jmv8l50suj6crnvn6dc2429', changes_at=None), [])

The second element of the tuple returned by Wallet.staking_status() is a list of scheduled future staking status
changes.

25

Cardano Python Module, Release 0.8.2

6.3 Staking

Once decided which stake pool to use, you may delegate the wallet’s balance there. The first argument must be either
pool’s ID or one of the StakePoolInfo objects returned from pool query described above.

If successful, the result will be the delegation transaction.

In [33]: tx = wallet.stake("pool1xqh4kl5gzn4av7uf32lxas5k8tsfgvhy3hlnrg0fdp98q42jswr")

In [34]: tx.amount_out
Out[34]: Decimal('2.000000')

6.4 Unstaking

Cancelling an ongoing delegation is pretty straightforward. Just use the Wallet.unstake() method, providing a
passphrase and you will get the unstaking transaction as the result.

However, if you have a positive reward balance in the wallet, it needs to be withdrawn first. You may do it by calling the
Wallet.transfer() method for an amount higher than the accumulated reward and directing it to your first unused
local address, for example:

In [33]: wallet.balance()
Out[33]: Balance(total=Decimal('1050.770234'), available=Decimal('1050.520254'),␣
→˓reward=Decimal('0.249980'))

In [34]: wtx = wallet.transfer(wallet.first_unused_address(), Decimal(1), allow_
→˓withdrawal=True)

In [35]: wtx.withdrawals
Out[35]: [(Decimal('0.249980'), 'stake_
→˓test1urk6dxxc3qp9mk7hvjpm95acm6vp2evjm6fdg8542s3jg8qtsgmvf')]

In [36]: utx = wallet.unstake()

In [37]: wallet.staking_status()
Out[37]: (StakingStatus(delegating=True, target_id=
→˓'pool1tzmx7k40sm8kheam3pr2d4yexrp3jmv8l50suj6crnvn6dc2429', changes_at=None),␣
→˓[StakingStatus(delegating=False, target_id=None, changes_at=Epoch(number=134,␣
→˓starts=datetime.datetime(2021, 5, 24, 20, 20, 16, tzinfo=tzutc())))])

26 Chapter 6. Staking

CHAPTER

SEVEN

UTXO STATS

The Wallet has a utxo_stats()method which returns a histogram of UTXO (Unspent Transaction Output) statistics.

The result consists of three elements: total balance, histogram, scale.

The histogram part is a list of (threshold, number) pairs where the number describes how many UTXOs are avail-
able between the given threshold and the lower one.

The scale so far is always "log10".

In [40]: total, dist, scale = wallet.utxo_stats()

In [41]: total
Out[41]: Decimal('1052.422864')

In [42]: scale
Out[42]: 'log10'

In [43]: print("\n".join(["{:18.6f}: {:4d}".format(*d) for d in dist.items()]))
0.000010: 0
0.000100: 0
0.001000: 0
0.010000: 0
0.100000: 0
1.000000: 1

10.000000: 16
100.000000: 0
1000.000000: 2

10000.000000: 0
100000.000000: 0
1000000.000000: 0

10000000.000000: 0
100000000.000000: 0

1000000000.000000: 0
10000000000.000000: 0
45000000000.000000: 0

27

Cardano Python Module, Release 0.8.2

28 Chapter 7. UTXO stats

CHAPTER

EIGHT

CONSTANTS AND SIMPLE TYPES

These submodules contain constants and simple types used to represent Cardano data structures that don’t need any
internal functionality.

8.1 API reference

class cardano.consts.Era(value)
Represents Cardano era, a distinct phase of platform development.

Warning: Do NOT use the integer values directly. There are new Eras being introduced, as for example
Allegra and Mary were inserted as stepping stones into full Goguen. However, you may use comparison
operators between them, to check which was earlier or later than the other one.

class cardano.simpletypes.AssetID(asset_name, policy_id)
Represents the ID of a native Cardano asset. It consists of asset name and policy ID. It renders as string repre-
sentation of asset_name:policy_id.

The asset_name is always kept encoded as hexadecimal string and must be passed to the constructor as such.

The .name_bytes property is a bytes decoded representation of the hex. Because Cardano allows full ASCII
set to be used in asset names, some of them are not safe to be displayed directly.

class cardano.simpletypes.Balance(total, available, reward)
Represents a balance of asset, including total, principal and reward

property available
The principal, i.e. the total minus staking rewards

property reward
The staking rewards (interest)

property total
The total balance

class cardano.simpletypes.BlockPosition(epoch, slot, absolute_slot, height)
Represents block’s position within the blockchain

property absolute_slot
Absolute slot number

property epoch
Epoch number

29

Cardano Python Module, Release 0.8.2

property height
Block number (height of the chain) [optional]

property slot
Slot number

class cardano.simpletypes.Epoch(number, starts)
property number

Alias for field number 0

property starts
Alias for field number 1

class cardano.simpletypes.StakePoolInfo(id, status, ticker, name, description, homepage, rewards, cost,
margin, pledge, relative_stake, saturation, produced_blocks,
retirement)

Stores stake pool data

property cost
Fixed pool running cost in ADA

property description
Description

property homepage
Homepage URL

property id
Unique ID

property margin
Operator’s margin on the total reward before splitting it among stakeholders (as Decimal fraction)

property name
Name

property pledge
Minimal stake amount that the pool is willing to honor

property produced_blocks
Number of blocks produced by a given stake pool in its lifetime.

property relative_stake
The live pool stake relative to the total stake

property retirement
The Epoch in which the pool retires

property rewards
Alias for field number 6

property saturation
Saturation-level of the pool based on the desired number of pools aimed by the network. A value above 1
indicates that the pool is saturated.

property status
Status, one of StakePoolStatus enum

property ticker
3-5 chars long ticker

class cardano.simpletypes.StakePoolStatus(value)
Represents stake pool status

30 Chapter 8. Constants and simple types

Cardano Python Module, Release 0.8.2

class cardano.simpletypes.StakeRewardMetrics(expected, stake)
Represents stake pool reward metrics

property expected
Expected rewards at the end of an epoch, in ADA

property stake
Staked amount against which rewards were calculated, in ADA

class cardano.simpletypes.StakingStatus(delegating, target_id, changes_at)
Wallet’s staking status

property changes_at
Epoch since which the change comes live

property delegating
Whether the wallet is actively delegating

property target_id
The ID of the pool the wallet is delegating to

8.1. API reference 31

Cardano Python Module, Release 0.8.2

32 Chapter 8. Constants and simple types

CHAPTER

NINE

EXCEPTIONS

A collection of Cardano exceptions.

9.1 API reference

exception cardano.exceptions.AlreadyWithdrawing
Raised whan another withdrawal attempt is being made while one is already pending.

exception cardano.exceptions.BackendException
The base exception for backend errors.

exception cardano.exceptions.CannotCoverFee

exception cardano.exceptions.CardanoException
The base exception for cardano-python module.

exception cardano.exceptions.MissingPassphrase
Raised when the wallet is missing a required passphrase.

exception cardano.exceptions.NonNullRewards
Raised when trying to cancel stake without withdrawing rewards first.

exception cardano.exceptions.NotEnoughMoney
Raised when the balance is too low.

exception cardano.exceptions.PoolAlreadyJoined
Raised when trying to double-stake.

exception cardano.exceptions.StakingException
Base error when delegating, withdrawing or cancelling stake.

exception cardano.exceptions.TransactionException
Base for errors with constructing or handling transactions.

exception cardano.exceptions.UTXOTooSmall
Raised when the resulting UTXO with assets has too small ADA amount.

exception cardano.exceptions.WalletAlreadyExists
Raised when a duplicate wallet is requested to be created at the service.

exception cardano.exceptions.WalletException
The base exception for wallet errors.

exception cardano.exceptions.WalletServiceException
The base exception for wallet service errors.

33

Cardano Python Module, Release 0.8.2

exception cardano.exceptions.WrongPassphrase
Raised when the provided passphrase doesn’t match the wallet’s.

34 Chapter 9. Exceptions

CHAPTER

TEN

THE WALLET REST BACKEND (FROM CARDANO-WALLET)

10.1 API reference

exception cardano.backends.walletrest.exceptions.BadRequest(*args, **kwargs)
Raised when the underlying REST API returns HTTP code 400.

exception cardano.backends.walletrest.exceptions.CreatedInvalidTransaction(*args, **kwargs)

exception cardano.backends.walletrest.exceptions.NotFound(*args, **kwargs)
Raised when the underlying REST API returns HTTP code 404.

exception cardano.backends.walletrest.exceptions.NotSupported(*args, **kwargs)
Raised when wallet doesn’t provide the requested feature.

exception cardano.backends.walletrest.exceptions.RESTServerError(*args, **kwargs)
Raised when the underlying REST API returns HTTP code 403 or 500 and the error cannot be handled.

exception cardano.backends.walletrest.exceptions.WalletRESTException(*args, **kwargs)

35

Cardano Python Module, Release 0.8.2

36 Chapter 10. The wallet REST backend (from cardano-wallet)

CHAPTER

ELEVEN

INDICES AND TABLES

• genindex

• modindex

• search

37

Cardano Python Module, Release 0.8.2

38 Chapter 11. Indices and tables

PYTHON MODULE INDEX

c
cardano.address, 14
cardano.backends.walletrest.exceptions, 35
cardano.consts, 29
cardano.exceptions, 33
cardano.metadata, 20
cardano.numbers, 20
cardano.simpletypes, 29
cardano.transaction, 19
cardano.wallet, 7

39

Cardano Python Module, Release 0.8.2

40 Python Module Index

INDEX

A
absolute_slot (cardano.simpletypes.BlockPosition

property), 29
Address (class in cardano.address), 14
addresses() (cardano.wallet.Wallet method), 7
AlreadyWithdrawing, 33
as_ada() (in module cardano.numbers), 20
AssetID (class in cardano.simpletypes), 29
assets() (cardano.wallet.Wallet method), 7
available (cardano.simpletypes.Balance property), 29

B
BackendException, 33
BadRequest, 35
Balance (class in cardano.simpletypes), 29
balance() (cardano.wallet.Wallet method), 7
BlockPosition (class in cardano.simpletypes), 29
ByronAddress (class in cardano.address), 14

C
CannotCoverFee, 33
cardano.address

module, 14
cardano.backends.walletrest.exceptions

module, 35
cardano.consts

module, 29
cardano.exceptions

module, 33
cardano.metadata

module, 20
cardano.numbers

module, 20
cardano.simpletypes

module, 29
cardano.transaction

module, 19
cardano.wallet

module, 7
CardanoException, 33
changes_at (cardano.simpletypes.StakingStatus prop-

erty), 31

clear() (cardano.metadata.ImmutableDict method), 20
cost (cardano.simpletypes.StakePoolInfo property), 30
create_wallet() (cardano.wallet.WalletService

method), 9
CreatedInvalidTransaction, 35

D
delegating (cardano.simpletypes.StakingStatus prop-

erty), 31
delete() (cardano.wallet.Wallet method), 7
description (cardano.simpletypes.StakePoolInfo prop-

erty), 30
deserialize() (cardano.metadata.Metadata static

method), 21

E
epoch (cardano.simpletypes.BlockPosition property), 29
Epoch (class in cardano.simpletypes), 30
Era (class in cardano.consts), 29
estimate_fee() (cardano.wallet.Wallet method), 7
expected (cardano.simpletypes.StakeRewardMetrics

property), 31

F
first_unused_address() (cardano.wallet.Wallet

method), 8
from_lovelaces() (in module cardano.numbers), 20

H
height (cardano.simpletypes.BlockPosition property),

29
homepage (cardano.simpletypes.StakePoolInfo property),

30

I
IcarusAddress (class in cardano.address), 14
id (cardano.simpletypes.StakePoolInfo property), 30
ImmutableDict (class in cardano.metadata), 20
Input (class in cardano.transaction), 19

M
margin (cardano.simpletypes.StakePoolInfo property),

30

41

Cardano Python Module, Release 0.8.2

Metadata (class in cardano.metadata), 21
MissingPassphrase, 33
module

cardano.address, 14
cardano.backends.walletrest.exceptions,

35
cardano.consts, 29
cardano.exceptions, 33
cardano.metadata, 20
cardano.numbers, 20
cardano.simpletypes, 29
cardano.transaction, 19
cardano.wallet, 7

N
name (cardano.simpletypes.StakePoolInfo property), 30
NonNullRewards, 33
NotEnoughMoney, 33
NotFound, 35
NotSupported, 35
number (cardano.simpletypes.Epoch property), 30

O
Output (class in cardano.transaction), 19

P
pledge (cardano.simpletypes.StakePoolInfo property),

30
PoolAlreadyJoined, 33
pop() (cardano.metadata.ImmutableDict method), 20
popitem() (cardano.metadata.ImmutableDict method),

20
produced_blocks (cardano.simpletypes.StakePoolInfo

property), 30

R
relative_stake (cardano.simpletypes.StakePoolInfo

property), 30
RESTServerError, 35
retirement (cardano.simpletypes.StakePoolInfo prop-

erty), 30
reward (cardano.simpletypes.Balance property), 29
rewards (cardano.simpletypes.StakePoolInfo property),

30

S
saturation (cardano.simpletypes.StakePoolInfo prop-

erty), 30
serialize() (cardano.metadata.Metadata method), 21
serialize_value() (cardano.metadata.Metadata

static method), 21
ShelleyAddress (class in cardano.address), 14
slot (cardano.simpletypes.BlockPosition property), 30

stake (cardano.simpletypes.StakeRewardMetrics prop-
erty), 31

stake() (cardano.wallet.Wallet method), 8
stake_pools() (cardano.wallet.Wallet method), 8
StakePoolInfo (class in cardano.simpletypes), 30
StakePoolStatus (class in cardano.simpletypes), 30
StakeRewardMetrics (class in cardano.simpletypes),

30
staking_status() (cardano.wallet.Wallet method), 8
StakingException, 33
StakingStatus (class in cardano.simpletypes), 31
starts (cardano.simpletypes.Epoch property), 30
status (cardano.simpletypes.StakePoolInfo property),

30
sync_progress() (cardano.wallet.Wallet method), 8

T
target_id (cardano.simpletypes.StakingStatus prop-

erty), 31
ticker (cardano.simpletypes.StakePoolInfo property),

30
to_lovelaces() (in module cardano.numbers), 20
total (cardano.simpletypes.Balance property), 29
Transaction (class in cardano.transaction), 19
TransactionException, 33
transfer() (cardano.wallet.Wallet method), 8
transfer_multiple() (cardano.wallet.Wallet method),

9

U
unstake() (cardano.wallet.Wallet method), 9
update() (cardano.metadata.ImmutableDict method),

20
utxo_stats() (cardano.wallet.Wallet method), 9
UTXOTooSmall, 33

V
validate_key() (cardano.metadata.Metadata static

method), 21
validate_value() (cardano.metadata.Metadata static

method), 21

W
Wallet (class in cardano.wallet), 7
wallet() (cardano.wallet.WalletService method), 9
WalletAlreadyExists, 33
WalletException, 33
WalletRESTException, 35
wallets() (cardano.wallet.WalletService method), 10
WalletService (class in cardano.wallet), 9
WalletServiceException, 33
WrongPassphrase, 33

42 Index

	Quick start
	Use testnet for your own safety
	Connect to the wallet

	Working with wallets
	Creating wallets
	Balance tuple
	Sync progress

	Retrieving existing wallets
	Removing wallets
	API reference

	Addresses
	Retrieving wallet addresses
	API reference

	Listing transactions and spending funds
	Listing transactions
	Narrowing down the query
	Blockchain position
	Mempool
	Filtering by address

	Spending funds
	Estimating fees

	Metadata
	Lists and dicts as map keys
	Storing and retrieving metadata

	API reference
	Transactions
	Numbers
	Metadata

	Working with native assets
	Asset IDs
	Balances
	Sending assets

	Staking
	Querying pools
	Staking status
	Staking
	Unstaking

	UTXO stats
	Constants and simple types
	API reference

	Exceptions
	API reference

	The wallet REST backend (from cardano-wallet)
	API reference

	Indices and tables
	Python Module Index
	Index

